3/PHY-200 (Th) Syllabus-2023

2024

(December)

FYUP: 3rd Semester Examination

MAJOR

PHYSICS

(Mathematical Physics—II and Experimental Physics—III)

PHY-200

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any eight questions

- 1. (a) Obtain the relation between Cartesian coordinates (x, y, z) and its spherical polar coordinates (r, θ, ϕ) .
 - (b) Calculate the spherical coordinates of the point P(3, 4, 5).
- 2. (a) Convert the complex number $z = 1 + i\sqrt{3}$ to its polar form.

D25/942

(Turn Over)

3

- (b) Find the Taylor series expansion of the function $f(x) = e^x$ about x = 0. Write down the first four terms of the series.
- (a) Derive the Cauchy-Riemann conditions for an analytic function.
 - (b) The real and imaginary parts of f(z) are $u(x, y) = x^2 y^2$ and v(x, y) = 2xy. Determine whether f(z) is analytic at any point.
- (a) State and prove Cauchy's integral formula.
 - (b) Using the above formula, evaluate $\oint_C \frac{e^z}{z-1} dz$, where |z| = 2.
- 5. Write down the Legendre's differential equation. Derive the Rodrigue's formula for Legendre's polynomials $P_n(x)$. Find $P_2(x)$.
- 6. Solve the equation

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

where α is the thermal diffusivity constant with the following conditions :

Boundary conditions :
$$T(0, t) = 0$$

 $T(L, t) = 0$

Initial conditions:
$$T(x, 0) = f(x)$$
 7

7. (a) Prove that the Hermite polynomials $H_n(x)$ satisfy the recurrence relation

$$H_{n+1}(x) = 2xH_n(x) - 2xH_{n-1}(x)$$
 4

- (b) If $H_0(x) = 1$ and $H_1(x) = 2x$, find $H_2(x)$ and $H_3(x)$. $1\frac{1}{2} + 1\frac{1}{2} = 3$
- 8. (a) Write down the general form of a second-order linear differential equation.

 Find the conditions for ordinary, regular and irregular singular points. 1+3=4
 - (b) Examine whether x = 0 a regular singular or an irregular singular point of the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - (x^{2} + 1)y = 0$$

- **9.** (a) Derive the expression for the Legendre's duplication formula.
 - (b) Evaluate $\Gamma(-\frac{5}{2})$.
- 10. (a) Define beta function $\beta(m, n)$ and gamma function $\Gamma(n)$. Write down the relationship between them. 1+1+1=3
 - Evaluate β(2, 3).

5

5

2

5

5

 Find the eigenvalues and its corresponding eigenvectors of the matrix

$$M = \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix}$$
 4+3=7

3

- 12. (a) If $\phi = x^3 + y^3 + z^3 3xyz$, then find (ii) div (grad ϕ) and (ii) curl (grad ϕ). 2+2=4
 - (b) If A be a square complex matrix, then show that it can be expressed as sum of a Hermitian and skew-Hermitian matrices.

 $\star\star\star$